Интеллектуальные информационные системы

         

АСК-анализ, как технология синтеза и эксплуатации рефлексивных АСУ активными объектами


Применение АСК-анализа обеспечивает выявление информационных зависимостей между факторами различной природы и будущими состояниями объекта управления, т.е. позволяет осуществить синтез содержательной информационной модели, а фактически – осуществить синтез АСУ. Применение АСК-анализа в составе АСУ обеспечивает ее эксплуатацию в режиме непрерывной адаптации модели (на детерминистских этапах), а когда это необходимо (т.е. после прохождения точек бифуркации) – и ее нового синтеза.

Ниже приведена технология системы "Эйдос" как инструментария АСК-анализа:

Шаг 1–й: формализация предметной области (БКОСА-1): разработка описательных и классификационных шкал и градаций, необходимых для формализованного описания предметной области. Описательные шкалы описывают факторы различной природы, влияющие на поведение АОУ, а классификационные – все его будущие состояния, в том числе целевые.

Шаг 2–й: формирование обучающей выборки (БКОСА-2): информация о состоянии среды и объекта управления, а также вариантах управляющих воздействий поступает на вход системы. Работа по преобразованию этой информации в формализованный вид (т.е. кодирование) осуществляется специалистами, обслуживающими систему с использованием описательных и классификационных шкал. Вся эта информация представляется в виде специальных кодированных бланков, используемых также для ввода информации в компьютер. В результате ее формируется так называемая "обучающая выборка".

Шаг 3–й: обучение (БКОСА-3):

обучающая выборка обрабатывается обучающим алгоритмом, на основе чего им формируются решающие правила (обобщенные образы состояний АОУ, отражающие весь спектр будущих возможных состояний объекта управления) и определяется ценность факторов для решения задач подсистем идентификации, мониторинга, прогнозирования и выработки управляющих воздействий.

Шаг 4–й: оптимизация (БКОСА-4): факторы, не имеющие особой прогностической ценности, корректным способом удаляются из системы. Данный процесс осуществляется с помощью итерационных алгоритмов, при этом обеспечивается выполнение ряда ограничений, таких как результирующая размерность пространства факторов, его информационная избыточность и т.п.


Шаг 5–й: верификация модели (БКОСА-5): выполняется после каждой адаптации или пересинтеза модели. На этом шаге обучающая выборка копируется в распознаваемую и осуществляется ее автоматическая классификация (в режиме распознавания). Затем рассчитываются так называемые внутренняя дифференциальная и интегральная валидности, характеризующие качество решающих правил.

Шаг-6: принятие решения об эксплуатации модели или ее пересинтезе. Если результаты верификации модели удовлетворяют разработчиков РАСУ АО, то она переводится из пилотного (экспериментального) режима, при котором управляющие решения генерировались, но не исполнялись, в режим экспериментальной эксплуатации, а затем и опытно–производственной эксплуатации, когда они реально начинают использоваться для управления. Иначе, т.е. если же модель признана недостаточно адекватной, то необходимо осуществить ее пересинтез, начиная с шага 1. При этом используются следующие приемы: расширение набора факторов, т.к. значимые факторы могли не войти в модель; увеличение объема обучающей выборки, т.к. существенные примеры могли не войти в обучающую выборку; исключение артефактов, т.к. в модель могли вкрасться существенно искажающие ее не подтверждающиеся данные; пересмотр экспертных оценок и, если необходимость этого возникает систематически, то и переформирование экспертного совета, т.к. причиной этого могла быть некомпетентность экспертов; объединение некоторых классы, т.к. по ним недостаточно данных; разделение некоторых классов, т.к. по ним слишком высокая вариабельность объектов по признакам, и т.д.

Шаг 7-й: идентификация и прогнозирование состояния АОУ (БКОСА-7).

Шаг 8-й: оценка качества идентификации состояния АОУ. Если качество идентификации высокое, то состояние АОУ рассматривается как типовое, а значит причинно-следственные взаимосвязи между факторами и будущими состояниями данного объекта управления считаются адекватно отраженными в модели и известными (т.е. если качество идентификации высокое, то считается, что объект относится к генеральной совокупности, по отношению к которой обучающая выборка репрезентативна).


Поэтому в этом случае осуществляется переход на Шаг-9 (выработка управляющего воздействия и последующий анализ). Иначе – считается, что на вход системы идентификации попал объект, не относящийся к генеральной совокупности, адекватно представленной обучающей выборкой. Поэтому в этом случае информация о нем поступает на Шаг-13, начиная с которого запускается процедура пересинтеза модели, что приводит к расширению генеральной совокупности, представленной обучающей выборкой.

Шаг 9-й: выработка решения об управляющем воздействии (БКОСА-9) путем решения обратной задачи прогнозирования[64].

Шаг 10–й типологический анализ классов и факторов (БКОСА-10): кластерно-конструктивный и когнитивный анализ, семантические сети, когнитивные диаграммы состояний АОУ и факторов [64].

Шаг 11-й: многофакторное планирование и принятие решения о применении системы управляющих факторов (БКОСА-11).

Шаг 12-й: оценка адекватности принятого решения об управляющих воздействиях: если АОУ перешел в заданное целевое состояние, то осуществляется переход на вход адаптации содержательной информационной модели (Шаг- 2): в подсистеме идентификации предусмотрен режим дополнения распознаваемой выборки к обучающей, чтобы в последующем, когда станут известны результаты управления, этой верифицированной (т.е. достоверной) оценочной информацией дополнить обучающую выборку и переформировать решающие правила (обучающая обратная связь). Иначе, т.е. если АОУ не перешел в заданное целевое состояние, переход на вход пересинтеза модели (Шаг-1), при этом могут быть изменены и описательные, и классификационные (оценочные) шкалы, что позволяет качественно расширить сферу адекватного функционирования РАСУ АО.

Шаг 13–й (неформализованный поиск нетипового решения об управляющем воздействии и подготовка данных для пересинтеза модели, как в случае, если решения оказалось удачным, так и в противном случае).

Таким образом, предложена технология применения системы "Эйдос" как инструментария применения АСК-анализа, основанного на системной теории информации, ориентированной на синтез рефлексивных АСУ АО.В процессе эксплуатации системы "Эйдос" успешно решаются все задачи АСК-анализа:  формирование обобщенных образов состояний АОУ на основе обучающей выборки (обучение); идентификация состояний АОУ на основе его параметров (распознавание); определение влияния входных параметров на перевод АОУ в различные будущие состояния (обратная задача прогнозирования); прогнозирование поведения АОУ в условиях полного отсутствия управляющих воздействий; прогнозирование поведения АОУ при различных вариантах многофакторных управляющих воздействий.

Кроме того, выявленные в результате работы рефлексивной АСУ причинно-следственные зависимости между факторами различной природы и будущими состояниями объекта управления позволяют, при условии неизменности этих закономерностей в течение достаточно длительного времени, построить АСУ с постоянной моделью классического типа.


Содержание раздела