Иллюстрированный самоучитель по Matlab

         

возвращает гиперболический синус для каждого


» X=[pi/2 pi/4 pi/6 pi]; 

» sech(X) 

ans =

0.3985     0.7549     0.8770     0.0863

sinh(X) — возвращает гиперболический синус для каждого элемента X. Пример:

» X=[pi/8 pi/7 pi/5 pi/10];

» sinh(X) 

ans =

0.4029     0.4640     0.6705     0.3194

tanh(X) — возвращает гиперболический тангенс для каждого элемента X. Пример:

» X=[pi/2 pi/4 pi/6 pi/10]; 

»tanh(X) 

ans =

0.9172     0.6558     0.4805     0.3042

Следующий m-файл-сценарий строит графики ряда гиперболических функций:

syms x

subplot(2,2,l).ezplot(sinh(x).[-4 4]).xlabel(").grid on 

subplot(2,2.2).ezplot(cosh(x).[-4 4]).xlabel('').grid on 

subp1ot(2.2,3).ezplot(tanh(x).[-4 4]).grid on

subplot(2.2.4).ezplot(sech(x).[-4 4]).grid on

Нетрудно заметить, что гиперболические функции в отличие от тригонометрических не являются периодическими. Выбранные для графического представления функции дают примеры характерных нелинейностей.

В другом файле использованы команды для построения графиков ряда обратных гиперболических функций:

syms x

subplot(2,2.1).ezplot(asinh(x).[-4 4]).xlabel(").grid on 

subplot(2.2.2),ezp1ot(acosh(x).[0 4]).xlabel(").grid on 

subplot(2,2.3),ezplot(atanh(x).[-l l]).grid on 

subplot(2.2.4).ezplot(asech(x).[0 l]).grid on

На этих графиках хорошо видны особенности данного класса функций. Такие функции, как обратный гиперболический синус и тангенс, «ценятся» за симметричный вид их графиков, дающий приближение к ряду типовых нелинейностей.


Содержание  Назад  Вперед